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Background and objective

* This research has been conducted within the
FESIO project during years 2022-2024.

* The project partners have been Seinajoki Energia
(SEN) and Etela-Pohjanmaa Voima (EPV).

* Research objective: Develop an optimization
model for the dispatch scheduling of the boilers
and simulate potential savings when introducing
changes in the network settings (electric boiler,
heat pumps, heat storage, data centers, ...).

e Almost 50% of buildings in Finland use district
heating (Finnish Energy, 2022).

* Heat demand in district heating is primary driven
by outdoor temperature.
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Introduction

* Fuels in district heating networks are changing due to a
combination of environmental, economic and
technological factors.

* Environmental: District heating must reduce CO,
emissions, especially in the Nordic countries.

* Economic: Global events (e.g. energy crises, wars,
pandemics) lead to price peaks and high volatility in the
price of fuels such as oil and natural gas.

» Technological: Introduction of low-temperature networks,
electrical boilers, waste heat recovery with heat pumps
and heat storage.

* The use of large electrical boilers has recently “exploded”
in Finland (Finnish Energy, 2024). Electrical boilers reduce
the use of fuel-based boilers when electricity price is low.

* Electricity and district heat demand have become more
correlated (Finnish Energy, 2024).
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Power demand

Introduction
Challenges with district heating: o
* Variable heat power demand that must be ;iz
met. % N
* Scheduling of multiple heat production o0
units (boilers, heat pumps, heat storage, ...) “wr
Motivation for dispatch optimization: Ui 1 ¥ U
Boilers

Need for cost-effective operation.
Provides a lower bound for the total cost.

Can be extended to simulate savings for
changes in the set of heat production units.

Provides support for investment decisions.

Feasible dispatch schedule
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Optimal dispatch scheduling

The optimal dispatch scheduling problem can be formulated as a mixed
linear optimization problem.

Parameters

* Heat power demand

* Production costs and startup/shutdown costs of boilers

* Capacities and bounds of boilers

* Heat storage size and specifications

Variables

* Power output for each boiler

* Logical variables to model boiler status on/off

* Logical variables to model startup/shutdown costs

* State-of-charge of heat storage (energy/temperature level)
Objective

* Minimize total cost (production + startup/shutdown cost)
Constraints

* Power demand constraint

* Power bounds for boilers

* Linearization constraints for boiler logic

* Energy balance of heat storage

Simple heat storage model:

Modeled as a battery.
Empty: 50 °C, Full: 95 °C (1000 m3 <->52 MWh)

Charging/discharging can be done at a power
equivalent to the electric boiler capacity.

State-of-charge of heat storage not fixed at the end
of rolling horizon.

Optimization using rolling horizon principle:

The yearly optimized cost is computed using a rolling
horizon strategy using a forward window length of 3
days (72 hours).

The step length is set to 24 hours.
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Case study: Hypothetical district
heating network

Example year: 2021 (hypothetical heat power
demand data and real spot price data)

Hourly heat power demand in plot.

Current boiler setting in table (capacities, bounds
and costs).

Lower bounds on operating level for boilers A-C.
Startup and shutdown costs are included.

Six boilers in the network. Boiler F is a small electric
boiler that runs with spot price + 12 €/MWh. Fuel
costs illustrated in plot.

Heat storage included in the simulations.
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Minimal cost operation
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Simulation principle and

example
 Size of electrical boiler (MW):
5,10, 15, ..., 50 MW

 Size of heat storage (m3):
1000, 2000, 4000, 8000, 16000

* For each combination of electric
boiler and heat storage size we
optimize the dispatch over the year
2021. The optimization is done by
solving approximately 360
optimization problems using the
rolling horizon strategy.

e Example: 30 MW, 8000 m3 >

Minimal cost operation
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Simulation results

The company is interested in potential savings
when including a larger electric boiler and also a
small-medium sized heat storage.

Current situation: O

Some insights:

* A heat storage is a good investment, especially

a small one.

It is always beneficial with a larger electric
boiler, but the benefit of larger heat storage
flattens out.

With 5 MW electric boiler it is enough to have a
1000 m3 heat storage.

Equal savings for 1000 m3 heat storage and 10
MW of additional electric boiler capacity.

Trend break! Why?
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Summary

Thank youl

1. We have developed an optimization-based
framework for optimal dispatch scheduling
in district heating.

2. The framework can be used for estimating
the lower bound for the total heat
production cost in a district heating
network.

3. The framework is adaptable to simulate
changes in the set of boilers, inclusion of
heat pumps and heat storage.

4. It can be used as a tool for supporting
investment decisions.
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